Abstract

On the basis that thiacalix[4]arene (H(4)T4A) complex (PPh(4) )(2) [H(2)T4A(VO(2))](2) (Ia) was found to be an adequate functional model for surface species occurring on vanadium oxide based catalysts and itself catalyses the oxidative dehydrogenation (ODH) of alcohols, an analogue containing 2,2'-thiobis(2,4-di-tert-butylphenolate), (S)L(2-), as ligand, namely, (PPh(4))(2)[(S)LVO(2)](2) (II) was investigated in the same context. Despite the apparent similarity of Ia and II, studies on II revealed several novel insights, which are also valuable in connection with surfaces of vanadia catalysts: 1) For Ia and II similar turnover numbers (TONs) were found for the ODH of activated alcohols, which indicates that the additional OH units inherent to Ia do not contribute particularly to the activity of this complex, for instance, through prebinding of the alcohol. 2) On dissolution II enters into an equilibrium with a monomeric form, which is the predominant species in solution; nevertheless, ODH proceeds exclusively at the dimeric form, and this stresses the need for cooperation of two vanadium centres. 3) By omitting O(2) from the system during the oxidation of 9-fluorenol, the reduced form of the catalyst could be isolated and fully characterised (including single-crystal X-ray analysis). The corresponding intermediate had been elusive in case of thiacalixarene system Ia. 4) Reoxidation was found to proceed via a peroxide intermediate that also oxidises one alcohol equivalent. As the peroxide can also perform mono- and dioxygenation of the thioether group in II, after a number of turnovers the active catalyst contains a sulfone group. The reduced form of this ultimate catalyst was also isolated and structurally characterised. Possible implications of 1)-4) for the function of heterogeneous vanadia catalysts are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call