Abstract

We present a new route for obtaining surface-tethered polymer films containing pendant catechol functional groups via surface-initiated activators regenerated by electron-transfer atom-transfer radical polymerization (SI-ARGET ATRP) of glycidyl methacrylate (GMA) and post-polymerization modification of the resulting poly(glycidyl methacrylate) (pGMA) films with dopamine. This method enables a high degree of functionalization of pGMA films with catechol groups at a controlled level, depending on the duration of the post-polymerization modification reaction. The dopamine-pGMA films readily absorbs Al3+ and Zn2+ ions, as verified by quartz crystal microbalance with dissipation (QCM-D) under continuous flow conditions, and demonstrates a four-fold molar selectivity to Al3+ over Zn2+. The ions desorb from the films upon rinsing with pure deionized (DI) water, which regenerates the catechol sites in the dopamine-pGMA film. Subsequent exposure to metal ions after rinsing steps yields reproducible levels of loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call