Abstract
In this study, we developed a uniform initiator layer that can be formed on various surfaces, and formed site-selectively, for the subsequent antifouling polymer brush formation. Initially, metal-organic films composed of tannic acid (TA) and FeIII ions (TA-FeIII) were formed on various surfaces, followed by functionalization with an aryl azide-based initiator (ABI) under photoreaction. In particular, combination with a photolithographic technique enabled the presentation of initiators only on the intended region within a single-surface platform. A resultant initiator film (TF-ABI) was formed under mild reaction conditions and meets the uniformity and transparency requirements concurrently. Subsequently, we showed that TF-ABI can be further utilized to form a polymer brush by proceeding with surface-initiated polymerization using a zwitterionic monomer, namely, sulfobetaine acrylamide (SBAA). Instead of applying a classical, yet air-sensitive atom transfer radical polymerization (ATRP) technique, we utilized an activator regenerated by electron transfer (ARGET) ATRP under air conditions without a cumbersome deoxygenation step. Overall, our initiator layer allowed the antifouling poly(SBAA) brush to be used on various surfaces, and enabled their pattern generation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have