Abstract
Well-defined lactose-containing glycopolymer has been synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization with (4-cyanopentanoic acid)-4- dithiobenozoate (CAD) as chain transfer agent. The glycopolymer was introduced onto the exterior surfaces of the bovine serum albumin (BSA) imprinted polymer beads by grafting copolymerization with methyl methacrylate and ethylene glycol dimethacrylate. After alcoholysis, the hydrophilic lactose residues of glycopolymer will stretched on the surface of the MIP beads and then the hydrophilicity of the surface will be enhanced. Rebinding test shows that the glycopolymer hydrophilic modified BSA imprinted polymer presents higher performance selectivity than that of unmodified one, which means that the hydrophobic–hydrophilic balance of the imprinted polymer surface is in favor of the improvement of specific recognition property of the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.