Abstract

Low-temperature carburizing below 773K of austenite stainless steel can produce expanded austenite, known as S-phase, where surface hardness is improved while corrosion resistance is retained. Plasma-sprayed austenitic AISI 316L stainless steel coatings were carburized at low temperatures to enhance wear resistance. Because the sprayed AISI 316L coatings include oxide layers synthesized in the air during the plasma spraying process, the oxide layers may restrict carbon diffusion. We found that the carbon content of the sprayed AISI 316L coatings by low-temperature carburizing was less than that of the AISI 316L steel plates; however, there was little difference in the thickness of the carburized layers. The Vickers hardness of the carburized AISI 316L spray coating was above 1000HV and the amount of specific wear by dry sliding wear was improved by two orders of magnitude. We conclude that low-temperature plasma carburizing enabling the sprayed coatings to enhance the wear resistance to the level of carburized AISI 316L stainless steel plates. As for corrosion resistance in a 3.5 mass% NaCl solution, the carburized AISI 316L spray coating was slightly inferior to the as-sprayed AISI 316L coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call