Abstract

The present investigation demonstrates that in squamate reptiles, as already reported for Podarcis sicula (Andreuccetti et al., 2001), the differentiation of pyriform cells from small, stem follicle cells is characterized by the progressive appearance on the cell surface of glycoproteins bearing alpha-GalNAc terminated O-linked side chains. Using a lectin panel (WGA, GSI-A4, GSI-B4, PSA UEA-I, PNA, Con-A, DBA, LCA, BPA, SBA), we demonstrated that, during previtellogenesis, the pattern of distribution of DBA binding sites over the follicular epithelium dramatically changes. In fact, binding sites first appear in follicular epithelium at the time that small cells begin to differentiate; in such follicles, labeling is evident on the cell surfaces of small and intermediate cells. Later on, as the differentiation progresses, the binding sites also become evident on the cell surface of pyriform cells. Once differentiated, the pattern of the distribution of DBA binding sites over the follicular epithelium does not change. By contrast, during the phase of intermediate and pyriform cell regression, DBA binding sites gradually decrease, so that the monolayered follicular epithelium of vitellogenic follicles, constituted only by small cells, shows no binding sites for DBA. It is noteworthy that binding sites for DBA are present on small cells located in contact with the oocyte membrane, but not on those located under the basal lamina or among pyriform cells, and therefore not engaged in the differentiation into pyriform cells. This finding demonstrates that, in squamates, the pattern of distribution of alpha-N-GalNAc containing glycoproteins significantly changes during previtellogenesis, and that these modifications are probably related to the differentiation of small stem cells into highly specialized pyriforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.