Abstract
Developing highly effective nonlinear optical (NLO) materials is a cutting-edge field of study. The desirability of promising NLO materials for optoelectronic and electronic applications drove us to investigate the sulflower (C18S9) doped complexes for developing highly efficient NLO materials. A successful computational design technique for superhalogens (BeF3, MgF3, CaF3, CaCl3) doping is employed on sulflower, and eight stable isomers (BeF3@SF-5M, BeF3@SF-9M, MgF3@SF-5M, MgF3@SF-9M, CaF3@SF-5M, CaF3@SF-9M, CaCl3@ SF-5M, CaCl3@SF-9M) are proposed for NLO properties. DFT and TD-DFT simulations confirm the potential use of superhalogen-doped sulflower complexes for NLO response applications by evaluating NLO response properties, photophysical aspects, frontier molecular orbital (FMO), natural bond orbitals (NBO), non-covalent interaction (NCI), vertical ionization energies (VIE), interaction energies (E int), molecular electrostatic potential (MEP) and density of state (DOS) analysis. The Eint (−28.37 to −53.86 kcal/mol) and VIE (7.0-7.4 eV) findings suggest that superhalogens-doped sulflower complexes are thermodynamically stable and show durable interaction among sulflower and doped superhalogens. Superhalogens doping on sulflower effectively shorten the energy gap from 4.46 eV (pure sulflower) to 4.17 eV in CaCl3@SF-5M isomer. Superhalogens doping causes a change in the dipole moment from 0 D of pure sulflower to 12.57 D in the CaCl3@SF-5M isomer. Proficient intermolecular charge transfers between sulflower and doped superhalogens were established by NCI and NBO analyses. UV-Vis investigation revealed that all superhalogen-doped sulflower complexes are adequately transparent in the near-infrared and visible wavelength ranges. Augmentation in polarizability value from 333.86 a.u.−569.98 a.u and in first hyperpolarizability from 0.00 a.u to 6.6 × 104 a.u. is achieved upon superhalogens doping. A striking NLO response (β 0 = 6.6 × 104 a.u) is exhibited by CaCl3@SF-5M isomer. This report provides an efficient superhalogens doping technique for creating highly effective future NLO systems and recommends superhalogens-doped sulflower complexes as ideal entrants for future NLO applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.