Abstract
Surface functionalization of cellulose with poly(3-hexylthiophene) (P3HT) was conducted with FeCl3 as an oxidant in three different solvents: acetonitrile, chloroform, and hexane. Of these three solvents, hexane best promoted the grafting P3HT to cellulose with a high grafting ratio and molecular weight. The maxima of the UV–vis absorption and fluorescent spectra, observed at around 500 and 600nm, respectively, represented the build-up of the conjugated chain length formed by the grafting of P3HT onto the cellulose surface. The HOMO level of cellulose as determined by photoemission yield spectroscopy decreased from 4.83 to 4.67eV after modification with P3HT. Grafting P3HT onto the surface of cellulose provided super-hydrophobic property with a lotus effect. The conductivity of cellulose also improved significantly, from 10−9 to 10−6S/cm when P3HT was present on the surface. The thermal stability and crystallinity of cellulose decreased slightly upon graft polymerization with P3HT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.