Abstract

British Columbia experienced three years with notably large and severe wildfires since 2015. Multiple stand-replacing wildfires occurred in coastal–transitional forests, where large fires are typically rare, and thus, information on post-fire carbon is lacking. Because of their carbon storage potential, coastal–transitional forests are important in the global carbon cycle. We examined differences in surface fuel carbon among fire severity classes in 2016, one year after the Boulder Creek fire, which burned 6 735 ha of coastal–transitional forests in 2015. Using remotely sensed indices (dNBR), we partitioned the fire area into unburned (control), low-, moderate-, and high-severity classes. Field plots were randomly located in each class. At each plot, surface fuel carbon was quantified by type, namely coarse, small, and fine woody material, duff, and litter, and carbon mass by fuel type was compared among severity classes. Total surface fuel carbon did not differ significantly between burned and unburned plots; however, there was significantly less duff and litter carbon in burned plots. Remotely sensed severity classes did not properly capture wildfire impacts on surface fuels, especially at lower severities. Pre-fire stand characteristics are also important drivers of surface fuel loads. This case study provides baseline data for examining post-fire fuel carbon dynamics in coastal–transitional British Columbia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call