Abstract

Purpose The surface properties like roughness, wettability and surface free energy are important for utility properties of traditional and flowable dental restorative composites, due to their role in plaque formation, discoloration, mechanical wear or adhesion and bonding. The goal of our work was to assess the surface free energy (SFE) and the surface roughness (Ra) of three commercial flowable dental composites: everX Flow (bulk), everX Flow (dentin) and Flow-Art. Methods Surface roughness, contact angle and surface free energy were determined for tested composites. Two surface states (control and roughened) were compared. Roughness was measured with the use of the 3D optical profilometer. The contact angle (CA) was determined through the sessile drop method with the use of four different probing liquids. This enabled to apply two surface free energy approaches (Owens–Wendt (O-W) and van Oss–Chaudhury–Good (LWAB)). Additionally, Zisman’s approach (γC) was used. Results The water contact angle values were similar for Flow-Art (67.56±1.49°) and everX Flow (bulk) (68.94±2.72°) compared to higher value for everX Flow (dentin) (74.39±2.05°). SFE was in the range from 43 to 50 mJ/m^2 for O-W and from 47 to 62 mJ/m2 for LWAB. The γC was from 37 to 45 mJ/m^2. Conclusions Roughening composites’ surface influenced on increasing the CA value. All approaches of surface free energy calculations provide useful data for predicting interactions between flowable composites and dental tissues. Tested composites showed good wetting for initial state of surface after polymerization. These influence on better adhesion of the material to the bonding system during dental restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call