Abstract

Lahars represent one of the most destructive natural disasters regarding the loss of human lives, but also for making havoc on public infrastructures and ecological habitats. They are very complex surface flows subdivided into two main categories, primary and secondary lahars. Primary lahars are those that originated directly from eruptive volcanic activity, as in the tremendous 1985 Colombian event of Nevado del Ruiz. In contrast, secondary lahars may occur in post-eruptive events or quiescent periods. This volcanic debris flow, a mixture of water and pyroclastic sediments with high density and viscosity, under steep-slope conditions, is capable of reaching high speeds and can travel great distances. A variety of approaches have been adopted to model the behavior of lahar and to predict the hazards posed to downstream communities: empirical models developed, accounting mainly for some macro-observable phenomena, simple rheological and hydrological models that assume reasonable simplifications as a composition-independent flow behavior or a Newtonian flow regime, partial differential equations (PDE) which approximately describe the lahars, highly complex physics and hydrodynamics, and the Cellular Automata alternative methodology. Cellular Automata are a parallel computational paradigm for modeling complex systems by defining simple laws at a local level that generate a global complex evolution. The research, reported in this book, adopts a Multicomponent (or Macroscopic) Cellular Automata (MCA) approach that was developed for numerical simulation purposes by an interdisciplinary research group in Italy. Its reliability and validation on various past events, related to both primary and secondary lahars and debris flow catastrophic events, produced many significant scientific results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.