Abstract

The surface oxidation states of the metal electrodes affect the activity, selectivity, and stability of the electrocatalysts. Oxide formation and reduction on such electrodes must be comprehensively understood to achieve next-generation electrocatalysts with outstanding performance and stability. Herein, the initial electrochemical oxidation of Pt(111) in alkaline media containing hydrophilic and hydrophobic cations is investigated by X-ray crystal truncation rod (CTR) scattering, infrared (IR) spectroscopy, and nanoparticle-based surface-enhanced Raman spectroscopy (SERS). Structural determination using X-ray CTR revealed surface buckling and Pt extraction at the initial stage of surface oxidation, depending on the cationic species. Vibrational spectroscopy is performed to identify the potential- and cation-dependent formation of three oxide species (IR-active OHad, Raman-active OHad/Oad(H2O), and Raman-active Oad). Hydrophilic alkali metal cations (Li+) inhibit surface roughening via irreversible oxide formation. Hydrophilic Li+ can strongly stabilize IR-active OHad, hindering the extraction of Pt surface atoms. Interestingly, bulky hydrophobic cations such as tetramethylammonium (TMA+) cation also reduce the extent of irreversible oxidation despite the absence of IR-active OHad. Hydrophobic TMA+ inhibits the formation of Raman-active OHad/Oad(H2O) associated with Pt extraction. In contrast, the moderate hydrophilicity of K+ has no protective effect against irreversible oxidation. Moderate hydrophilicity enables the coadsorption of Raman-active OHad/Oad(H2O) and Raman-active Oad. The electrostatic repulsion between Raman-active OHad/Oad(H2O) and neighboring Raman-active Oad promotes Pt extraction. These results provide insights into controlling the surface structures of electrocatalysts using cationic species during the oxide formation and reduction processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call