Abstract

AbstractLiquid metal alloys can accumulate specific solute metal atoms on their surface, creating distinct quasi‐ordered atomic layers. Such atomic layers can be tuned by varying the alloy composition to form catalytic interfaces suited for multi‐step reactions. Here, the surface enrichment in gallium‐indium alloys is studied and utilized for carbon dioxide (CO2) electrochemical reduction. The results show that adding a small amount of indium (16.8 at%) to gallium leads to a significant indium enrichment of >83 at% on the topmost layer of the alloy. This enrichment dictates the CO2 conversion pathway, leading to 98% faradaic efficiency toward formate at −1.90 V vs reversible hydrogen electrode (RHE). This study produces unprecedented insights into key interfacial processes and lays the foundation for significant further work within the areas of catalysis and liquid metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.