Abstract

Here, we present a simple and green method of preparing Au-Ag bimetallic nanoparticles (NPs) with a tunable surface plasmon resonance (SPR) wavelength by using picosecond laser irradiation. Au-Ag alloy NPs have been produced by irradiating the solutions containing respective metallic salts in a polyvinyl alcohol (PVA) matrix using a picosecond laser in a single-step process. The SPR wavelength of the Au-Ag bimetallic NPs is observed to be shifted/changed with the Au-Ag concentration and the laser irradiation parameters. The Au-Ag NPs embedded in the PVA matrix are advantageous for Surface-Enhanced Raman scattering (SERS) applications. The estimated enhancement factors (EFs) were observed to vary as a function of conditions of the Au-Ag bimetallic alloy NPs synthesis and also on the concentration of Au at a fixed input fluence of irradiation. The SERS active platforms of Au-Ag bimetallic NPs showed EFs as high as of the order of 108 for Crystal Violet (CV) dye samples at nano molar concentrations. The present study demonstrates a simple, single-step, and green method that fabricates Au-Ag alloy-based nanocomposites suitable for SERS investigations with significantly higher orders of EFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call