Abstract
Infrared absorption provides the intrinsic vibrational information on chemical bonds, which is important for identifying molecular moieties. To enhance the sensitivity of infrared absorption, plasmonic antennas have been widely used to localize and concentrate mid-infrared light into nanometer-scale hotspots at desired wavelengths. Here, instead of inorganic plasmonic antennas, we have demonstrated surface-enhanced infrared absorption (SEIRA) using single plasmonic antennas based on a conducting polymer. With commercially available PEDOT:PSS (poly(ethylenedioxythiophene):poly(styrenesulfonate)), the organic plasmonic antennas are in the fashion of single PEDOT:PSS micropillars. The plasmonic resonance of single PEDOT:PSS micropillar antennas can be easily tuned by the micropillar diameter or by the interantenna gap across the mid-infrared frequencies. These organic plasmonic antennas show the ability to enhance the molecular vibrations of CBP (4,4'-bis(N-carbazolyl)-1,1'-biphenyl) molecules with a thickness of about 50 nm, illustrating the good SEIRA sensitivity (with SEIRA sensitivity up to ∼7800) at the single antenna level. Our findings provide another material choice for mid-infrared plasmonic antennas toward SEIRA applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have