Abstract

Developing sustainable, renewable, hydrophobic, and biodegradable packaging material to replace petroleum-based plastic products remains a challenge. Herein, original cellulose/myristic acid composite films were fabricated by solvent-vaporized controllable crystallization of natural myristic acid on anisotropic cellulose films. The myristic acid crystals that evenly distributed on the surface of cellulose film generated micronano binary structure and the interstitial space between microplates, resulting in high hydrophobicity (water contact angle = 132°) and excellent self-cleaning property of the composite film. The resultant film exhibited good tensile strength and toughness under both dry (188.7 MPa, 34.4 MJ m−3) and humid conditions (119.9 MPa, 28.7 MJ m−3). Moreover, these composite films could be degraded completely after approximately 102 days in soil with an average environment temperature of 32 °C. This work provided a low-cost and sustainable pathway for the fabrication of high-strength, self-cleaning, and waterproof packaging materials instead of plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.