Abstract
Surface energy fluxes, mainly encompassing the net radiation (Rn), latent heat flux (LE), sensible heat flux (Hs), and soil heat flux (Gs), play an important role in the land-atmosphere interactions. However, almost all sites face the problem of energy imbalance, and advection fluxes associated with large inhomogeneous surfaces have been ignored, especially in arid oasis areas. In this study, a three-year continuous measurement of energy fluxes with an eddy covariance system was conducted in a drip-irrigated oasis agroecosystem in Northwest China. Reanalysis data including air temperature (Ta), soil moisture (θ), and leaf area index (LAI) in our cropland and surrounding deserts were also collected. The results showed that multi-year mean turbulent fluxes (LE+Hs) accounted for 75 ± 8 % (mean ± standard deviation) of available energy (Rn–Gs). To be precise, LE took up 72 ± 10 % of available energy, and 7.8 ± 2.8 % of it was induced by higher sensible heat advection, proving a pronounced advection effect in this study. When advection was present, most likely during the heading stage, the threshold value for the Priestley–Taylor parameter α, an indicator to reflect the advection effect, fell in the range of 0.88–1.34. Additionally, after a significant irrigation event, α showed a good linear relationship with differences in air temperature (ΔTa), soil moisture (Δθ), and leaf area index (ΔLAI) between our cropland and surrounding deserts. It's worth mentioning that Δθ was the most significant factor, showing a negative correlation with the advection effect. This study has deepened our understanding of the energy balance in oasis agriculture, emphasizing that the advection effect should not be overlooked.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have