Abstract
We report theoretical investigations on the surface electronic structure of the (110)-face of SnO 2, a semiconductor of rutile bulk structure. Starting with a tight binding Hamiltonian for the bulk, we determine the surface electronic structure using the scattering theoretic method. As results we obtain the surface bound states, the surface resonances and the wave-vector resolved surface layer densities of states. The dominant features are two backbond states in the stomach gap of the main valence band and two Sn- s derived states in the lower conduction band region. In the upper valence band region, only weak resonances occur, like in other materials with relatively strong ionicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.