Abstract

The influence of surface effects on the energy-generating performance of piezoelectric circular nanomembrane energy harvesters under blood pressure is studied. The effects of surface elasticity, surface piezoelectricity, residual surface stress and geometry nonlinear strain are incorporated in the present model. An approximated closed-form solution for the electrical energy of the nanomembrane is derived by using the energy method. Results show that positive surface elasticity and residual surface stress reduce the electrical energy and the surface piezoelectricity effect increases the electrical energy. The influence of surface effect on the energy-generating performance of piezoelectric circular membranes is more significant for a membrane with a small thickness and a large radius-to-thickness ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call