Abstract

The influence of the surface effect on the nanosized spherical void growth in a rigid-perfectly plastic material is analyzed and the mechanism of the nanosized void growth with high triaxiality is given. Based on the Rice and Tracey model for a macro void growth, the present model is proposed to account for the nanosized void growth under a uniform remote strain rate field with consideration on the surface effect. It is concluded that the surface effect yields an evident resistant influence on the nanosized void growth. That is, this influence decays as the void radius increases. With high triaxiality, the nanosized void growth is divided into two stages: the initial stage and the mature stage. At the first stage, the void grows slowly and the influence of surface effect is relatively weak, whereas at the second stage, the influence is significant and the void grows drastically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call