Abstract
Anatase titanium dioxide (TiO2) has garnered enormous attention as a promising anode material for sodium-ion batteries (SIBs), owing to its non-toxicity, superior structural stability, and cost-effectiveness. Nevertheless, its intrinsic low electrical conductivity poses a substantial challenge to its practical applications. Here, the ultrathin TiO2 nanosheets were obtained. The TiO2 nanosheets with a thickness of ∼8 nm and exposed 84 % (001) facet. The exposed (001) crystal facets and ultrathin nanosheet structure provide abundant active sites for Na-ion adsorption, shortens ion diffusion pathways, enhances reaction kinetics, and significantly boosts the pseudocapacitive effect. This synergistic strategy of exposed (001) facet with nanosheets structure leads to an exceptional capacity of 177.1 mAh/g at 0.1 A/g, and 59 % capacity retention at 5 A/g. This work will contribute to the understanding of facet-dependent electrochemical behavior anode materials for high-performance SIBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have