Abstract

We have analyzed the surface polarity of both the cation-independent (CI-MPR) and the cation-dependent (CD-MPR) mannose 6-phosphate receptors in the epithelial Madin-Darby canine kidney (MDCK) cell line grown on polycarbonate filters. The surface localization was studied by plasma membrane domain-specific surface labeling methods and by confocal microscopy using MPR-specific antibodies. The CI-MPR was shown to be exclusively present on the basolateral cell surface. In contrast, the CD-MPR was expressed neither apically nor basolaterally. However, an intracellular pool of CD-MPR could be detected. In MDCKII-RCAr cells, cell surface CI-MPR was shown to recycle between the basolateral plasma membrane and the trans-Golgi network. After exogalactosylation, cell surface CI-MPR acquired sialic acid residues in a time-dependent manner. Furthermore, the basolateral CI-MPR was shown to be functional. Lysosomal enzymes, bearing the mannose 6-phosphate recognition marker, were taken up from the basolateral medium and endocytosed into the cells. Uptake of lysosomal enzymes from the apical side was insignificant and not MPR mediated. These results extend previous immunoelectron microscopic studies on the intracellular polarity of the CI-MPR (Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G. (1989) J. Cell Biol. 109, 3259-3272) which showed that the CI-MPR was present in basolateral early endosomes and in late endosomes but absent from apical early endosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.