Abstract
In contrast to the monolithic c-Ti1−xAlxN, the isostructural spinodal decomposition to c-AlN and c-TiN in c-Ti1−xAlxN/TiN multilayers has almost the same onset temperature for the compositions x = 0.50 and 0.66. Differential scanning calorimetry also shows that the decomposition initiates at a lower temperature compared to the monoliths with the same Al-content. Z-contrast scanning transmission electron microscopy imaging reveals a decomposed structure of the multilayers at temperatures where the monoliths remain in solid solution. In the multilayers, the decomposition is initiated at the internal interfaces. The formation of an AlN-rich layer followed by a TiN-rich area parallel to the interface in the decomposed Ti0.34Al0.66N/TiN coating, as observed in atom probe tomography, is consistent with surface directed spinodal decomposition. Phase field simulations predict this behavior both in terms of microstructure evolution and kinetics. Here, we note that surface directed spinodal decomposition is affected by the as-deposited elemental fluctuations, coherency stresses, and alloy composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.