Abstract

Oxygen octahedral tilts underpin the functionality of a large number of perovskite-based materials and heterostructures with competing order parameters. We show how a precise analysis of atomic column shapes in Z-contrast scanning transmission electron microscopy images can reveal polarization and octahedral tilt behavior across uncharged and charged domain walls in BiFeO(3). This method is capable of visualizing octahedral tilts to much higher thicknesses than phase contrast imaging. We find that the octahedral tilt transition across a charged domain wall is atomically abrupt, while the associated polarization profile is diffuse (1.5-2 nm). Ginzburg-Landau theory then allows the relative contributions of polarization and the structural order parameters to the wall energy to be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.