Abstract
Successful intracellular delivery of therapeutics requires interactions at several liquid-solid interfaces, including cell surface, endosomal membranes, and-depending on the therapeutic-the nuclear membrane. Understanding the dynamics of polymer kinetics at the liquid-solid interface is fundamental for the design of polymers for such biomedical delivery applications. However, the effect of polymer architecture and charge density on polymer kinetics is not readily investigated using routine techniques, and the role of such parameters in the context of gene delivery remains unknown. We adopted a synthetic strategy which enabled the systematic manipulation of charge density, flexibility, and molecular weight using a dendronized linear polymeric architecture. High-speed atomic force microscopy (HS-AFM) was used as a label-free method to directly observe the polymers' dynamic properties, such as velocity, displacement, and diffusion, in physiologically relevant conditions. Importantly, we found that the physical parameters measured by HS-AFM relate to the transfection potential of the individual polymers and may be a valuable tool in screening structural polymer variants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have