Abstract
Surface defects have an adverse effect on the quality of industrial products, and vision-based defect detection is widely researched due to its objective and stable performance. However, the task is still challenging due to diversified defect types and complex background texture. The robust principal component analysis (RPCA) has proven applicable in defect inspection by regarding nondefective background as the low-rank part and defective area as the sparse part. However, such methods cannot sufficiently detect defects due to complex cluttered background, noise interference, and limited features available. To address these issues, in this article, we proposed an unsupervised surface defect detection method based on nonconvex total variation (TV) regularized RPCA with kernelization, named KRPCA-NTV. Specifically, the kernel method is integrated into RPCA to better handle complex cluttered background lying in a nonstrict low-rank subspace. Furthermore, nonconvex TV regularization is introduced to prevent the noise pixel from being separated into the defect region; meanwhile, nonconvex optimization promotes higher solution accuracy. In addition, the kernel canonical correlation analysis (KCCA) is utilized to fuse complementary features for boosting feature representation ability. To demonstrate the superiority and robustness of the proposed method, we compare it with the state of the art on five defect data sets; the results show that the proposed method outperforms competing methods in terms of accuracy and generalizability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.