Abstract

Serious defects in the continuous casting of steel, including surface cracks and depressions, are often related to thermal mechanical behavior during solidification in the mold. A finite-element model has been developed to simulate the temperature, shape, and stress of the steel shell, as it moves down the mold in a state of generalized plane strain at the casting speed. The thermal model simulates transient heat transfer in the solidifying steel and between the shell and mold wall. The thermal model is coupled with a stress model that features temperature-, composition-, and phase dependent elastic-visco-plastic constitutive behavior of the steel, accounting for liquid, δ-ferrite, and γ-austenite behavior. Depressions are predicted to form when the shell is subjected to either excessive compression or tension, but the shapes, severity, and appearance differ with conditions. Cracks appearing without depressions are suggested to form in the lower ductility trough when the shell is colder but more brittle. The local thickness of the shell and austenite layer appears to have major effects as well. The model reveals new insights into the formation mechanisms and behavior of surface depressions and longitudinal cracks in the continuous casting process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call