Abstract

The sorption of 2-, 3-, and 4-aminopyridine on K-saturated Wyoming (SWy-K) and Texas (STx-K) and Ca-enriched Texas (STx-Ca) montmorillonite was measured at 25 °C with 10 mM KNO 3 or 3.3 mM Ca(NO 3) 2 as the background electrolyte. The aminopyridines adsorbed to montmorillonite at low pH, but not at high pH. Extended constant capacitance surface complexation models (ECCMs) and attenuated total reflectance-FTIR data indicate that aminopyridines sorb to the silica-like faces by cation exchange, forming outer-sphere complexes between aminopyridinium ions and permanent negatively charged surface sites (X −). X-ray diffraction data and sorption kinetics suggest that sorption occurs not only at external X − sites but also at those in the interlayer spaces. Differences in the sorption behaviors of 2-, 3-, and 4-aminopyridine result from differences in their p K a s. The extent of sorption of aminopyridines by the montmorillonite samples (SWy-K > STx-K > STx-Ca) results from the higher cation-exchange capacity of SWy-K, and from the fact that Ca 2+ is much more effective than K + in competing with protonated aminopyridines for the X − sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.