Abstract

Lithium–manganese-rich layered oxides are of great importance as cathode materials for rechargeable lithium batteries. In this article, Li1.2Mn0.567Ni0.167Co0.066O2 is prepared by a co-precipitation method, and the delaminated MnO2 nanosheets with different amounts, 1 wt%, 3 wt% and 5 wt%, are introduced for coating this material for the first time. The structure and morphology of these materials have been investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. The results clearly demonstrate that the surface of lithium–manganese-rich layered oxides is covered by continuous delaminated MnO2 nanosheets. The electrochemical properties including the discharge capacity, initial coulombic efficiency, rate capability and cycle stability of these coated materials have been greatly enhanced, which are obviously related to the delaminated MnO2 nanosheet coating with good electrochemical activity and low charge transfer resistance. Moreover, the lithium–manganese-rich layered oxide coated with 3 wt% delaminated MnO2 nanosheets presents the best comprehensive electrochemical properties as well as improves the initial discharge capacity and coulombic efficiency by 299 mA h g−1 and 88% respectively; the capacity retention after 50 cycles also reaches 93%, and the discharge capacity can be 157 mA h g−1 even at a 5 C discharge rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.