Abstract

An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi-electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC-MS analysis, we confirm DMTS could undergo almost a 4 e(-) reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2 S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g(-1) DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g(-1) , the reversible specific energy for the cell including electrolyte can be 229 Wh kg(-1) . This study shows organotrisulfide is a promising high-capacity cathode material for high-energy rechargeable lithium batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call