Abstract
Tin dioxide (SnO2) has various applications due to its unique surface and electronic properties. These properties are strongly influenced by Sn oxidation states and associated defect chemistries. Recently, the oxidation of volatile organic compounds (VOCs) into less harmful molecules has been demonstrated using SnO2 catalysts. A common VOC, 2-propanol (isopropyl alcohol, IPA), has been used as a model compound to better understand SnO2 reaction kinetics. We have used ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to characterize the surface chemistry of IPA and O2 mixtures on stoichiometric, unreconstructed SnO2(110)-(1 × 1) surfaces. AP-XPS experiments were performed for IPA pressures ≤3 mbar, various IPA/O2 ratios, and several reaction temperatures. These measurements allowed us to determine the chemical states of adsorbed species on SnO2(110)-(1 × 1) under numerous experimental conditions. We found that both the IPA/O2 ratio and sample temperature strongly influence reaction chemistries. AP-XPS valence-band spectra indicate that the surface was partially reduced from Sn4+ to Sn2+ during reactions with IPA. In situ mass spectrometry and gas-phase AP-XPS results indicate that the main reaction product was acetone under these conditions. For O2 and IPA mixtures, the reaction kinetics substantially increased and the surface remained solely Sn4+. We believe that O2 replenished surface oxygen vacancies and that SnO2 bridging and in-plane oxygen are likely the active oxygen species. Moreover, addition of O2 to the reaction results in a reduction in formation of acetone and an increase in formation of CO2 and H2O. Based on these studies, we have developed a reaction model that describes the catalytic oxidation of IPA on stoichiometric SnO2(110)-(1 × 1) surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.