Abstract
Modulation of the surface chemistry of air electrodes makes it possible to significantly improve the electrocatalytic performance of solid oxide cells (SOCs). Here, the surface chemistry of BaGd0.8La0.2Co2O6-δ (BGLC) double perovskite is modulated by treatment in an acidic citric acid solution. The treatment leads to corrosion on the surface of BGLC particles, and the effect is dependent on the acidity of the solution. As the acidity of solution is low, Ba cations are selectively dissolved out of the BGLC surface, while as the acidity increases, the corrosion becomes more homogeneous. The Ba surface deficiency remarkably increases the concentration of surface oxygen vacancies and electrocatalytic activity of BGLC. To avoid the loss of Ba-deficient surface during the conventional high temperature sintering process, a sintering-free fabrication route is utilized to directly assemble the Ba-deficient BGLC powder into an air electrode. A single cell with the surface Ba-deficient BGLC electrode shows a peak power density of 1.04 W cm-2 at 750 °C and an electrolysis current density of 1.48 A cm-2 at 1.3 V, much greater than 0.64 W cm-2 and 1.02 A cm-2 of the cell with the pristine BGLC, respectively. This work provides a simple and effective surface chemistry modulation strategy for the development of an efficient air electrode for SOCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have