Abstract
AbstractAlthough wood–plastic composites have become more accepted and used in recent years and are promoted as low‐maintenance, high‐durability building products, they do experience a color change and a loss in mechanical properties with accelerated weathering. In this study, we attempted to characterize the modulus‐of‐elasticity (MOE) loss of photostabilized high‐density polyethylene (HDPE) and composites of wood flour and high‐density polyethylene (WF/HDPE) with accelerated weathering. We then examined how weathering changed the surface chemistry of the composites and looked at whether or not the surface changes were related to the MOE loss. By examining surface chemistry changes, we hoped to begin to understand what caused the weathering changes. The materials were left unstabilized or were stabilized with either an ultraviolet absorber or pigment. After 1000 and 2000 h of accelerated weathering, the samples were tested for MOE loss. Fourier transform infrared (FTIR) spectroscopy was employed to monitor carbonyl and vinyl group formation at the surface. Changes in the HDPE crystallinity were also determined with FTIR techniques. It was determined that structural changes in the samples (carbonyl group formation, terminal vinyl group formation, and crystallinity changes) could not be reliably used to predict changes in MOE with a simple linear relationship. This indicated that the effects of crosslinking, chain scission, and crystallinity changes due to ultraviolet exposure and interfacial degradation due to moisture exposure were interrelated factors for the weathering of HDPE and WF/HDPE composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2263–2273, 2004
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have