Abstract

Charge accumulation phenomenon on gas–solid interface greatly restricts the development of HVDC energy transmission system. In this study, the surface charge transport behavior and flashover performance on alumina/epoxy spacer coated by SiC/epoxy composites are experimentally investigated under DC stress. SiC/epoxy composites with varied SiC particle size are fabricated and deposited on spacer surface. Nearly a charge free surface is achieved especially at smaller SiC particle size, even when metallic wires are adhered on spacer surface and connected to high voltage electrode. The DC flashover voltage increases with the decrease of SiC particle size. On the one hand, smaller SiC particle size exhibits more outstanding nonlinear conductivity characteristics, contributing to accelerating charge dissipation, whereas on the other hand, it would introduce plenty of shallow traps due to the increased interfacial regions between SiC particle and epoxy matrix, resulting in aggravating charge accumulation. A theoretical model is proposed to reveal the control mechanism of SiC/epoxy coating with different SiC particle size on flashover performance. The validity of this model can be confirmed based on the surface trap distribution, carrier mobility and our previous investigations on gas–solid interface flashover development process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.