Abstract

Surface flashover properties of alumina/epoxy spacers, involving a surface charge accumulation process, are critical for the safe and reliable operation of a high-voltage direct-current (HVDC) gas-insulated transmission line (GIL). This study reports surface charging behavior and flashover performance of alumina/epoxy spacers with different surface conductivity graded coating (SCGC) schemes in SF6/N2 mixtures under DC stress. Four kinds of SCGC schemes, i.e. localized coating near high voltage (HV-coating), near grounded electrode (GND-coating), at the middle of spacer surface (SPM-coating) and near both high voltage and grounded electrode (HV-GND-coating), are designed by partially spraying SiC/epoxy composites on the spacer surface. Surface charge distribution patterns exhibit varied features with different SCGC schemes. The HV-coating and GND-coating schemes lead to aggravated homo-charge and hetero-charge accumulation respectively, whereas in the SPM-coating scheme surface charge shows a multi-tier distribution pattern with alternating polarity. A transition of the dominant surface charge mechanism from bulk conductivity to surface conductivity with increasing conductivity on the coated area is found. Flashover performance differs a lot with different SCGC schemes: the HV-coating and HV-GND-coating schemes increase the flashover voltage while the SPM-coating and GND-coating schemes degrade it. The optimal surface insulation strength is achieved in the HV-coating scheme with a coating width of about 10 mm. The impact of different SCGC schemes on flashover performance is revealed based on the electric field analysis by considering the effect of surface charges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call