Abstract
A new type of vancomycin (Van)-modified carbon nanodots (CNDs@Van) with pH-responsive surface charge switchable activity was successfully developed by covalently cross-linking Van on the surface of carbon nanodots (CNDs). Polymeric Van was formed on the surface of CNDs by covalent modification, which enhanced the targeted binding of CNDs@Van to vancomycin-resistant enterococci (VRE) biofilms and effectively reduced the carboxyl groups on the surface of CNDs to achieve pH-responsive surface charge switching. Most importantly, CNDs@Van was free at pH 7.4, but assembled at pH 5.5 owing to surface charge switching from negative to zero, resulting in remarkably enhanced near-infrared (NIR) absorption and photothermal properties. CNDs@Van exhibited good biocompatibility, low cytotoxicity, and weak hemolytic effects under physiological conditions (pH 7.4). Regarding targeted binding to VRE bacteria, CNDs@Van self-assembled in a weakly acidic environment (pH 5.5) generated by VRE biofilms, giving enhanced photokilling effects in in vitro and in vivo assays. Therefore, potentially, CNDs@Van can be used as a novel antimicrobial agent against VRE bacterial infections and their biofilms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.