Abstract

Streptococcus pneumoniae (pneumococcus) frequently colonizes the human nasopharynx and is an important cause of pneumonia, meningitis, sinusitis, and otitis media. The outer cell surface of pneumococcus may assume various degrees of negative charge depending on the polysaccharide capsule, of which more than 90 serotypes have been identified. The negative charge of capsular polysaccharides has been proposed to electrostatically repel pneumococci from phagocytic cells, and avoidance of phagocytosis correlates with higher carriage prevalence. We hypothesized that the surface charge of pneumococcus contributes to its success in nasopharyngeal carriage by modulating resistance to phagocyte-mediated killing. Here, we measured the surface charge (zeta potential) of laboratory-constructed strains that share a genetic background but differ in serotype and of clinical strains that differ in serotype and genetic background. A more negative surface charge correlated with higher resistance to nonopsonic killing by human neutrophils in vitro. In addition, a more negative zeta potential was associated with higher carriage prevalence in human populations before and after the widespread use of the pneumococcal conjugate vaccine PCV7. We also confirmed that capsule is the major determinant of net surface charge in clinical isolates with diverse backgrounds. We noted that exceptions exist to the idea that a higher magnitude of negative charge predicts higher prevalence. The results indicated that zeta potential is strongly influenced by pneumococcal capsule type but is unlikely to be the only important mechanism by which capsule interacts with host.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call