Abstract

Ion transport controlled by electrostatic interactions is an important phenomenon in biological and artificial membranes, channels, and nanopores. Here, we employ carbon-coated nanopipets (CNPs) for studying permselective electrochemistry in a conductive nanopore. A significant accumulation (up to 2000-fold) of cationic redox species and anion depletion inside a CNP by diffuse-layer and surface-charge effects in a solution of low ionic strength were observed as well as the shift of the voltammetric midpeak potential. Finite-element simulations of electrostatic effects on CNP voltammograms show permselective ion transport in a single conducting nanopore and semiquantitatively explain our experimental data. The reported results are potentially useful for improving sensitivity and selectivity of CNP sensors for ionic analytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call