Abstract
This work constitutes the first attempt to characterize the wettability of poly(α-hydroxy acid) (PAHA) microspheres in situ, prepared according to a complex process involving emulsification, solvent evaporation, washing and freeze-drying. The analysis of the flotation profile of the microspheres has allowed us to determine both advancing and receding contact angles at the microsphere/air/water interface and furnished information on the organization of poly(vinyl alcohol) (PVA) and bovine serum albumin (BSA) at the surface of the PAHA coating. By the comparison of contact angles measured from model surfaces obtained by sampling pure PAHA, PVA, BSA and mixed PVA/PAHA monolayers on glass and poly(methyl methacrylate) (PMMA) substrates, it was concluded that the emulsifier (PVA or BSA) was strongly anchored to the surfaces of the microspheres. The use of BSA to formulate the microspheres from a single oil-in-water emulsion led to dry particles having a hydrophobic surface. The unfolding of the hydrophilic segments of the BSA embedded at the surface of the microspheres, following immersion in water, increased the wettability of the microspheres by water. The same qualitative results were obtained when PVA was used to stabilize single emulsions. On the other hand, microspheres formulated from a double water-in-oil-in-water emulsion displayed no modifications of their wettability when immersed in water. This can be explained by the absence of mobility of the hydrophilic segments of the emulsifier which are blocked in the surface or at the subsurface of the polymer matrix.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have