Abstract

Scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy have been used to characterize the surface of depleted uranium molybdenum (DU-Mo) alloys as a chemical surrogate to determine potential challenges with the surfaces of manufactured and stored U-Mo foils and powders. Even when stored and shipped in an inert atmosphere, U-Mo has a tenacious surface contamination of oxygen and carbon. The 8 at. % molybdenum (DU-8Mo) powder and 10 at. % molybdenum (DU-10Mo) foil samples have surface contamination of oxygen and carbon in different ratios that is hundreds to thousands of nanometers thick. The DU-8Mo powder sample has been stored in an inert atmosphere and as a result has a lower carbon-to-oxygen ratio at the surface than the DU-10Mo foil sample that was stored in air. This surface contamination has not been removed by up to 20 min of argon ion sputtering nor with 5% hydrogen in argon heat treatment for up to 96 h at 950°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.