Abstract
The immobilization of DNA (deoxyribonucleic acid) on solid supports is a crucial step for any application in the field of DNA microarrays. It determines the efficacy of the hybridization and influences the signal strength for the detection. We used solid supports made from silicon wafers as an alternative substrate to the commonly used microscope glass slides. The covalent immobilization of thiol-terminated DNA oligonucleotides on self-assembled layers of (3-mercaptopropyl)trimethoxysilane (MPTS) by disulfide bond formation was investigated. Contact angle measurement, variable angle spectral ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to characterize the changing properties of the surface during the DNA array fabrication. During wafer processing the contact angle changed from 3° for the hydroxylated surface to 48.5° after deposition of MPTS. XPS data demonstrated that all sulfur in the MPTS layer was present in the form of reduced SH or S−S grou...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.