Abstract

Colloidal photonic structures with the ability to control and manipulate light propagation offer long-term color stability, low optical loss, and angle-dependent color properties, while combinations of different photonic structures across multiple scales provide an extensive color range and enhanced optical functionalities, presenting significant potential for advanced anticounterfeiting applications. However, the proper design or manufacture of such complex structures is still challenging. In this study, amorphous photonic structures (APSs) with thin film interference (TFI) effects were fabricated for multilevel anticounterfeiting. The APSs inherit the isotropic resonant scattering and render partial TFI effects, resulting in unprecedented dynamic specular and diffuse color-shifting features as the viewing or incident direction shifts. Additionally, incorporating a certain concentration of fluorescent microspheres into the colloidal ink adds a third layer of fluorescent anticounterfeiting mode to the APSs. Enabled by infiltration-assisted (IFAST) colloidal assembly technologies, the sophisticated color distributions and randomly arranged fluorescent microspheres on the microscale of APSs grant unique and inherent fingerprint features. The unique and unpredictable optical and structural characteristics of APSs provide physical unclonable functions (PUFs) to prevent replication and tampering, demonstrating their potential as optical PUF security labels for anticounterfeiting applications through artificial intelligence (AI) reading and authentication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.