Abstract

AbstractGenerally, tool steels for cold work are obtained by rolling and forging processes. They are treated to have a structure conferring to the material a high toughness limit in terms of wear resistance and endurance. The objective of this study is the thermochemical heat treatment of industrial steel blades made of AISI 02 types, intended for polymer crushing. The effects of nitrocarburizing (Tenifer) and gaseous carbonitriding processes on surface characteristics are considered. These surface treatments increase the usefulness of properties, that is, fatigue strength, wear and corrosion resistance of this microalloyed steel. The influence of treatment duration and the thickness of the layers on surface properties are investigated. The analysis and characterization are carried out using physical analysis [optical microscopy, scanning electron microscopy, X‐ray diffraction and glow discharge optical emission spectroscopy (GDOES) techniques] and mechanical measurements (microhardness, weight loss and residual stresses) of treated material. The results are intended to contribute in defining and optimizing the adequate choice of treatments for this type of steel in industrial conditions. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.