Abstract

Samples of sintered silicon carbide (SSiC) were irradiated with a KrF excimer laser (λ = 248 nm) at energy densities of 10, 15 and 25 J/cm2 in He atmosphere. The composition of the near surface region was investigated by Auger electron spectroscopy (AES) and photoelectron spectroscopy (XPS) after lapping, laser irradiation and tribological treatment, respectively. By laser irradiation a surface layer is formed which contains about 30% oxygen. The existence of different bonding states of Si, C and O was established by factor analysis of the AES depth profiles and by XPS. By laser irradiation SiC is decomposed and a siliconoxycarbide with the average composition SiC3.5O1.5 is formed. Beneath the oxidised surface layer the nominal elemental composition SiC is found but the sample represents a mixture of Si, graphite and siliconoxycarbide with a small amount of SiC only. Obviously, the decomposition zone exceeds in a depth > 300 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call