Abstract

The conceptualization of a representative volume element (RVE) of hardened cement paste for numerical homogenization of mechanical problems rests on identifying the largest discernible microstructural feature, i.e. unreacted cement grains. While the particle size distribution (PSD) of anhydrous cement is a well-controlled production parameter, the size evolution of a representative cement grain throughout hydration remained unresolved. This study analyzes digitized 3D cement paste microstructures obtained from X-ray micro-computed tomography, coupled with CEMHYD3D hydration model, and segmented by image-processing tools, to obtain the full PSD and specific surface area evolutions of unreacted grains throughout hydration. Results provided indicate a representative grain size in the range of 30−40μm regardless of hydration elapsed, implying a cement paste RVE should amount to 150−200μm to realistically represent cement grains. The PSD shape remained self-similar and two distinctive hydration regimes were identified, differing in dissolution rate and specific surface area decrease, correlating with calcium sulfate reactivity peak. Both measures provide easily accessible microstructural features that may be used for constructing artificial RVEs of hardened cement paste in micromechanical models and related simulations, resting on experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call