Abstract

Surface tension measurements were carried out for aqueous solutions of two cationic surfactants: dodecylethyldimethylammonium bromide (C 12(EDMAB)) and benzyldimethyldodecylammonium bromide (BDDAB). Isotherms and thermodynamic adsorption parameters were determined from the surface tension data. Firstly, the surface excess concentration in the adsorbed monolayer and the total concentration of the surfactants were determined, then the standard free energy of adsorption was calculated by different methods. In the calculations, different orientations of the surfactants at the adsorbed monolayer were also taken into account. From the experimental and calculated data it results that the difference in the structure of the two cationic surfactants by changing the methyl group for aryl one in their heads causes an increase of the efficiency and a decrease of the effectiveness of adsorption at water–air interface, and that the standard free energy of adsorption can be predicted from the surface tension of the surfactants assuming the aryl group to be equivalent to 3.5 methylene groups. The experimentally obtained difference between the standard free energy of adsorption of the C 12(EDMAB) and BDDAB was in good agreement with that theoretically accounted, corresponding to the standard free energy of adsorption of the aryl group. However, the best correlation between the values was obtained when a parallel orientation of the surfactant molecules at the adsorbed monolayer was taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.