Abstract
The escape of radionuclides from underground spent nuclear fuel disposal facilities will likely result from anoxic dissolution of spent nuclear fuel by intruding groundwater. Anoxic dissolution of various forms of uranium dioxide (UO2), namely bulk pellet, powder and thin film, has been investigated. Long-duration static batch dissolution experiments were designed to investigate the release of uranium ions in deionized water and any surface chemistry that may occur on the UO2 surface. The dissolved uranium concentration for anoxic dissolution of nearly stoichiometric UO2 was found to be of the order of 10−9 mol/l for the three different sample types. Further, clusters (∼500 nm) of homogenous uranium-containing precipitates of ∼20–100 nm grains were observed in thin film dissolution experiments. Such a low solubility of UO2 across sample types and the observation of secondary phases in deionized water suggest that anoxic UO2 dissolution does not only occur through a U(IV)(solid) to U(VI)(aqueous) process. Thus, we propose that dissolution of uranium under anoxic repository conditions may also proceed via U(IV)(solid) to U(IV)(aqueous), with subsequent U(IV) (precipitates) in a less defective form. Quantitative analysis of surface-sensitive EBSD diffractograms was conducted to elucidate lattice-mismatch induced cracks observed in UO2 thin film studies. Variable temperature anoxic dissolution was conducted, and no increased uranium concentration was observed in elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.