Abstract

Comprehension of graphics can be considered as a process of schema-mediated structure mapping from external graphics on internal mental models. Two experiments were conducted to test the hypothesis that graphics possess a perceptible surface structure as well as a semantic deep structure both of which affect mental model construction. The same content was presented to different groups of learners by graphics from different perspectives with different surface structures but the same deep structure. Deep structures were complementary: major features of the learning content in one experiment became minor features in the other experiment, and vice versa. Text was held constant. Participants were asked to read, understand, and memorize the learning material. Furthermore, they were either instructed to process the material from the perspective supported by the graphic or from an alternative perspective, or they received no further instruction. After learning, they were asked to recall the learning content from different perspectives by completing graphs of different formats as accurately as possible. Learners' recall was more accurate if the format of recall was the same as the learning format which indicates surface structure influences. However, participants also showed more accurate recall when they remembered the content from a perspective emphasizing the deep structure, regardless of the graphics format presented before. This included better recall of what they had not seen than of what they really had seen before. That is, deep structure effects overrode surface effects. Depending on context conditions, stimulation of additional cognitive processing by instruction had partially positive and partially negative effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call