Abstract

ABSTRACTWe present the crystallization effects occurring in sputtered amorphous Carbon (a-C) thin films deposited on Si induced by post-growth low energy (0.5-1.5 keV) Ar+ ion beam irradiation (IBI). The a-C films after IBI have the form of an amorphous matrix with embedded crystalline regions. X-ray diffraction and Electron Microscopy measurements identified the crystalline phases of carbon and SiC. We study in detail the effects of ion energy and fluence on the crystallization process. It was found that low fluence (∼2×1016 ions/cm2) of ions with an optimum ion energy (∼1.5 keV) promoted the diamond formation. X-Ray Reflectivity (XRR) and Spectroscopic Ellipsometry were used to study the amorphous matrix. XRR discriminated the IBI induced surface and bulk effects through the density and the a-C surface roughness, showing surface smoothing to be more prominent for low energy IBI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call