Abstract

Self-assembled monolayers of alkylsiloxanes supported on polydimethyl siloxane (PDMS) rubber were used as model systems to study the relation between blood compatibility and surface chemistry. The inner lumen of PDMS tubes was first treated with an oxygen plasma. The resultant oxidized surfaces were postderivatized by reacting them with alkyltrichlorosilanes to form the monolayer films. The chemical properties of the monolayers were controlled by varying the head-group chemical compositions. Surface derivatization was verified using variable-angle X-ray photoelectron spectroscopy (XPS or ESCA). Blood compatibility was evaluated using a canine ex vivo arteriovenous series shunt model. Surfaces grafted with hydrophobic head-groups as -CH3 and -CF3 had significantly lower platelet and fibrinogen deposition than the surfaces composed of hydrophilic groups such as -CO2CH3, -(CH2CH2O)3COCH3, and -(OCH2CH2)3OH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.